
Zend_Loader plugin directory support - Stanislav
Malyshev
<ac:macro ac:name="unmigrated-inline-wiki-markup"><ac:plain-text-body><![CDATA[

This proposal is implemented as Zend_Loader_PluginLoader

<ac:macro ac:name="unmigrated-inline-wiki-markup"><ac:plain-text-body><![CDATA[

Zend Framework: Zend_Loader plugin directory support - Stanislav
Malyshev Component Proposal

Proposed Component Name Zend_Loader plugin directory support - Stanislav Malyshev

Developer Notes http://framework.zend.com/wiki/display/ZFDEV/Zend_Loader plugin directory support - Stanislav Malyshev

Proposers Stanislav Malyshev

Revision 1.0 (wiki revision: 15)

Table of Contents

1. Overview
2. References
3. Component Requirements, Constraints, and Acceptance Criteria
4. Dependencies on Other Framework Components
5. Theory of Operation
6. Milestones / Tasks
7. Class Index
8. Use Cases
9. Class Skeletons

1. Overview

While working with the Framework, it might be needed to use certain classes belonging to other libraries or class bundles. These classes do not
reside inside Framework directories and sometimes do not follow same file structure conventions as the Framework. However, it would be
convenient if such files could participate in Framework loading mechanisms - for example, if the user could configure the directory where the
PEAR classes are kept and then use Framework class loader (automatically or manually) to access these classes. This would allow to use the
same loading mechanism across the application and not try to navigate between different loading mechanisms using by libraries or re-invent
loaders anew.

The present proposal is intended to allow Zend_Loader class support loading (and autoloading) sets of classes that do not reside in main
framework directory. Also, it provides base for implementing plugin structures for custom plugin sets - i.e. tag or helper library for template engine
or component set for CMS.

2. References

http://framework.zend.com/wiki/display/ZFDEV/Zend_Loader plugin directory support - Stanislav Malyshev

3. Component Requirements, Constraints, and Acceptance Criteria

The plugin loader will support autoloading classes from directories not residing in main Framework tree
The plugin loader will support framework naming scheme (X/Y/Z.php) and other naming schemes (e.g. X_Y_Z/X_Y_Z.php).
The plugin loader will be activated only when needed

4. Dependencies on Other Framework Components

Zend_Loader
Zend_Exception

5. Theory of Operation

The proposed functionality would allow the Framework loader to load - automatically or manually - classes that do not reside in the main
framework directory, such as component sets, external libraries, etc. The filename that is derived from the class name can be composed in two
ways - the "deep" way as Framework and PEAR do - i.e. class resides in - and the "shallow" way that isMy_Class_Foo My/Class/Foo.php
more suited for multiple unrelated components when class resides in .My_Class_Foo My_Class_Foo/My_Class_Foo.php

Also, the notion of would be supported - i.e. if prefix is defined, then class name would beprefix "My_Classes" My_Classes_DB_Table
looked up in in deep configuration and in in shallow configuration.DB/Table.php DB_Table/DB_Table.php

The user would be also able to "hint" the loader which library the loaded class belongs to, thus shortening the search for the right file. It would not
be necessary for the user to know where the library is located to load classes from it, and knowing the name would be optional - if it is not used,
the search would be performed in all known libraries together with the include path.

The library set would be searched after the main include path is searched, and also would be searched whenever the class loading is attempted
without specifying the directory. This should not have negative impact on the lookups, since if the file is not found in the include paths, it means
either it does not exist (in which case we'd error out so slowdown doesn't matter) or it is found in one of the library directories, which means we
would not find it using regular include path search. In the latter case, as described above using hinted manual loader might be recommended.

The search would go over all the library paths defined, using depth setting defined by the library path in each case, and try to resolve the class
name with each path. If no resolution could be found, the exception is thrown.

TBD: we may want to think about joining with somehow, though because the former receives the directory listloadClass loadLibraryClass
and the latter receives a hint it is not clear how to make it.

6. Milestones / Tasks

Milestone 0: Complete the proposal
Milestone 1: Collect feedback and refine the proposal
Milestone 2: Provided the proposal is deemed acceptable, initial implementation checked into the incubator
Milestone 3: Refine the implementation, document, create unit tests
Milestone 5: Merge into the main Zend_Loader class

7. Class Index

Zend_Loader

8. Use Cases

UC-01

Define prefixed class library with shallow naming scheme, use autoloader:

Zend_Loader::setLibraryPath("components", "/usr/share/lib/Zend/Components", "Zend_Component",
Zend_Loader::SHALLOW);
//....

$comp = new Zend_Component_Some_Table();
// Class was loaded from /usr/share/lib/Zend/Components/Some_Table/Some_Table.php

UC-02

Define non-prefixed library with deep naming scheme, named "pear", then use library hint to manually load class:

Zend_Loader::setLibraryPath("pear", "/usr/share/lib/pear");
//.....
ZendLoader::loadLibraryClass("OS_Guess", "pear");
$sys = new OS_Guess($uname);

9. Class Skeletons

class Zend_Loader {
const DEEP = 0;
const SHALLOW = 1;

public function setLibraryPath($name, $dirs, $prefix = null, $type = ZendLoader::DEEP) {}
}

public function loadLibraryClass($classname, $library = null) {}
}
}

]]></ac:plain-text-body></ac:macro>
]]></ac:plain-text-body></ac:macro>

