
Zend_Log_Writer_Firebug - Christoph Dorn
<ac:macro ac:name="unmigrated-inline-wiki-markup"><ac:plain-text-body><![CDATA[

<ac:macro ac:name="unmigrated-inline-wiki-markup"><ac:plain-text-body><![CDATA[

Zend Framework: Zend_Log_Writer_Firebug Component Proposal

Proposed Component Name Zend_Log_Writer_Firebug

Developer Notes http://framework.zend.com/wiki/display/ZFDEV/Zend_Log_Writer_Firebug

Proposers Christoph Dorn

Zend Liaison Matthew Weier O'Phinney

Revision 1.0 - 15 June 2008: Initial Draft.
1.1 - 27 June 2008: Revisions based on comments.
1.2 - 16 July 2008: Major revision based on feedback from Wil and Matthew (wiki revision: 37)

Table of Contents

1. Overview
Why Wildfire
2. References
3. Component Requirements, Constraints, and Acceptance Criteria
4. Dependencies on Other Framework Components
5. Theory of Operation
Overview
Future
6. Milestones / Tasks
7. Class Index
8. Use Cases
9. Class Skeletons

1. Overview

Status
This component is now in the standard incubator with complete documentation and tests.

Zend_Log_Writer_Firebug is used to inject logging messages into the Console from PHP. The component is a plugin for the WildfireFirebug
project. The goal of the Wildfire project is to develop standardized communication channels and a dynamic and scriptable remote plugin
architecture. At this time the primary focus is to provide a system to allow PHP code to inject logging messages into the Firebug Console.

For the purpose of logging to Firebug a communication protocol has been developed that uses HTTP request and response headers to send data
between the server and client components. It is great for logging intelligence data generated during script execution to the client browser without
interfering with the page content. Debugging AJAX requests that require clean JSON and XML responses is possible with this approach.

Why Wildfire

Javascript is becoming a major force in client browsers and applications not only for enhancing web pages but also the browser and applications
themselves. The Firefox browser is a great example of an application that can be extended by Javascript-based extensions. Up until now

http://framework.zend.com/wiki/display/ZFDEV/Zend_Log_Writer_Firebug
http://framework.zend.com/wiki/display/~matthew
http://www.getfirebug.com/

extensions installed on the client were fixed in their functionality and ability to interact with the loaded web age. That is about to change.

Wildfire will provide a standard for allowing server-side code to dynamically extend and enhance client extensions in a streamlined and secure
fashion. Users will not need to install custom extensions for specific sites, but rather simply authorize a specific site to load dynamic extensions
into the browser. The dynamically loaded extensions will reside in a sandbox with the same security policies as any other web page. In addition,
the Wildfire client extension will provide an API to interact with the browser itself. This API is also extensible by plugins which are installed as any
other browser extension.

The Wildfire concept has been proven by the project. The Wildfire communication protocols and plugin system will be developed overFirePHP
time based on user demand.

2. References

Wildfire - work in progress - will have more information soon
Firebug
FirePHP
symfony debug toolbar

3. Component Requirements, Constraints, and Acceptance Criteria

This component be automatically initialized by defaultwill not
This component send logging information to Firebug only if the developer requests itwill
This component send any logging information in the response headers if the FirePHP extension is not installed on the clientwill not
This component provide a Zend_Log_Writer implementationwill
This component provide a facility to log Exceptionswill
This component provide a Zend_Controller_Plugin_Abstract implementation to flush debug data on request end but before pagewill
content is sent
This component prevent cyclical exception handling should exceptions occur in the component. This be handled by thewill not must
developer.
This component make use of Zend_Json_Encoder to encode debug datawill
This component allow for mapping of all existing and custom Zend_Log priority levels to Firebug logging styleswill
This component save any data using Zend_Cache or the filesystem.will not

4. Dependencies on Other Framework Components

Zend_Loader
Zend_Log_Writer_Abstract
Zend_Controller_Request_Abstract
Zend_Controller_Response_Abstract
Zend_Controller_Plugin_Abstract
Zend_Json_Encoder

5. Theory of Operation

Overview

The idea is that the Zend_Log_Writer_Firebug component will provide the first transport to send debug information to a client in a non-destructive
way. In this case the Firebug Console (via FirePHP).

Zend_Log_Writer_Firebug as it is implemented now provides a great way to aid in debugging Zend Framework applications on an ad-hock basis.

http://www.firephp.org
http://www.wildfirehq.org/
http://www.getfirebug.com/
http://www.firephp.org/
http://www.symfony-project.org/book/1_0/16-Application-Management-Tools

This use-case will be expanded to a more comprehensive debugging framework that hooks into all Zend Framework components.

Future

The future debugging/intelligence/insight system, possibly implemented by an enhanced Log Writer should collect data at all critical points within
all components and provide facilities to enable and disable debug information on a component basis. The collected debug information may be
persisted to files, logged or otherwise recorded as well as sent to the client via Zend_Log_Writer_Firebug.

A future version of Zend_Wildfire (the Firefox extension as well as the Zend components) will provide a debug toolbar to be displayed in the
browser similar to the symfony debug toolbar. To achieve this we must first collect the mentioned debug information on a component basis.

All functionality beyond the current implementation should be part of new proposals that if applicable require certain additions to the Zend_Wildfire
components.

6. Milestones / Tasks

Milestone 1: [DONE] Reference implementation
Milestone 2: [DONE] Reference implementation refined
Milestone 3: [DONE] Working prototype checked into the incubator
Milestone 4: [DONE] Unit tests exist, work, and are checked into SVN.
Milestone 5: [DONE] Initial documentation exists.

7. Class Index

Zend_Log_Writer_Firebug
Zend_Wildfire_Exception
Zend_Wildfire_Plugin_FirePhp
Zend_Wildfire_Plugin_Interface
Zend_Wildfire_Channel_Interface
Zend_Wildfire_Channel_HttpHeaders
Zend_Wildfire_Protocol_JsonStream

8. Use Cases

Typical use of the Zend_Log_Writer_Firebug component will be in conjunction with Zend_Controller_Front. In these use-cases initialize the
component in your bootstrap file and use the logging calls in your models, views and controllers.

$writer = new Zend_Log_Writer_Firebug();
$logger = new Zend_Log($writer);

You can also use Zend_Log_Writer_Firebug without Zend_Controller_Front.

$writer = new Zend_Log_Writer_Firebug();
$logger = new Zend_Log($writer);

$request = new Zend_Controller_Request_Http();
$response = new Zend_Controller_Response_Http();
$channel = Zend_Wildfire_Channel_HttpHeaders::getInstance();
$channel->setRequest($request);
$channel->setResponse($response);
/**
 * Now you can make calls to the logger
 */

$logger->log('This is a log message!', Zend_Log::INFO);

/**
 * Flush log data to browser
 */
$channel->flush();
$response->sendHeaders();

9. Class Skeletons
]]></ac:plain-text-body></ac:macro>
]]></ac:plain-text-body></ac:macro>

